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Abstract—With the global deployment of more Internet of
Things (IoT) devices, the demand for running increasingly
complex applications, such as predicting parameters in intricate
systems or processing audio and images within the machine learn-
ing domain, has driven adaptations to existing models to lower
memory and computational demands. Meanwhile, intermittent
computing has brought forth a new paradigm for embedded,
energy-constrained systems, requiring further modifications to
the machine learning models and algorithms. Using approximate
computing concepts to enable model execution in a transient
energy environment has shown promising results. While advances
in intermittent machine learning have enabled more neural
network applications to be developed, many techniques and
models haven’t been widely tested and optimized yet. This
work proposes conducting a comprehensive survey and outlines
initial findings, positing further research needs to be done to
understand the current scenario of intermittent machine learning
and discover possible advances.

Index Terms—intermittent computing, machine learning,
model compression, microcontrollers, Internet of Things

I. INTRODUCTION

A surge in Internet of Things (IoT) devices worldwide has
been accompanied by the development of software frameworks
and hardware accelerators to perform more complex operations
and execute more demanding algorithms on less resourceful
computing systems, such as machine learning models [1].
The advent of LiteRT [2] (formerly TensorFlow Lite), which
is a runtime for artificial intelligence algorithm deployment
in embedded systems, has enabled novel applications in the
low-power embedded domain for micro-controllers previously
unaccounted-for: those demanding machine learning usage.
This was due to the challenges in developing meaningful
applications, considering the huge resource scarcity. More-
over, hardware accelerators have been developed, as well as
microcontrollers specifically for executing machine learning
and, more generally, artificial intelligence applications, such
as the LEA Accelerator in the MSP430FR board series1, the
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1Texas Instruments, Low-Energy Accelerator (LEA) Frequently Asked
Questions (FAQ), Document SLAA720, Nov. 2016.

MAX78000 by Maxim Integrated2, and the ESP32-S series by
Espressif Systems3.

Machine learning models, ranging from linear regression
through support vector classifiers to very complicated deep
neural networks, can provide great insight into datasets, such
as those collected by sensor nodes deployed in a wireless
sensor network (WSN) [3]. This can be true for both predicting
future results in a time series or parameters in a complex
system being monitored [4] or for clustering the results
obtained into more manageable subsets, reducing excess com-
munication and improving energy efficiency [5]. Image and
audio processing in the embedded devices is also a novel and
promising trend, considering the increased accuracy obtained
by employing machine learning models in those domains,
compared to the classic algorithms [6] [7]. Allowing execution
of those complex statistical analysis tools locally on the edge
devices, ranging from very low-power microcontrollers to
single-board computers, such as a Raspberry Pi, can reduce
network traffic and also the wait time for a result to be
provided to the end user while increasing data throughput
[8]. Moreover, communication is quite expensive and can
consume large amounts of power, which could be used in more
immediately relevant computations [9].

In tandem with developing machine learning frameworks
and accelerators for microcontrollers, energy harvesting tech-
nologies have been thoroughly explored over the past decade.
By drawing power from environmental sources, battery-free
operation becomes viable, reducing the environmental impact
associated with the rapid increase in IoT devices. This allows
for untethered use and enables novel applications previously
limited by the constant maintenance requirements of batteries.
However, executing meaningful programs in this domain sig-
nificantly differs from conventional execution models, leading
to a new computing paradigm: intermittent computing. By
creating new frameworks and adapting existing ones to ac-
commodate the variable energy supply from harvested sources,

2Maxim Integrated, Artificial Intelligence Microcontroller with Ultra-Low-
Power Convolutional Neural Network Accelerator, MAX78000 Datasheet,
May 2021.

3Espressif Systems, ESP32-S3-WROOM-1 & WROOM-1U Datasheet v1.3,
ESP32-S3 Datasheet, 2023.



intermittent operation has become less challenging and in-
creasingly beneficial. Nonetheless, further research is essential
to optimize performance in this intermittent environment [10].

By combining machine learning models and algorithms with
intermittent computing, new advancements can be achieved to
enhance the sustainability of the Internet of Things. As an
example, reinforcement learning has been explored as a way
to optimize energy usage [11]. However, machine learning
models are typically sensitive to contexts where data is faulty,
inconsistent, or otherwise discrepant in formats and values.
Such scenarios often arise due to intermittency — where
computing intermittency may lead to incomplete results, and
communication intermittency can cause invalid data packets —
necessitating additional mechanisms to mitigate these issues
and ensure reliable execution [9].

Another promising approach involves improving quality-of-
service metrics, such as minimizing response times and in-
creasing the frequency of value updates. This can be achieved
by enabling local model execution on energy-constrained and
computationally limited devices, therefore reducing commu-
nication latency. However, achieving this requires significant
modifications to neural network models, reducing memory
and computational demands [12] and enabling energy- and
intermittence-aware execution [9]. Various techniques, such
as quantization [13], [14], pruning [15] [16], tensor decom-
position [17] [18], knowledge distillation [19] and neural
architecture search [20], have been developed to support
these changes. Some techniques, notably quantization, and
pruning, have already been incorporated into frameworks
like LiteRT, which enable machine learning model execution
on microcontroller devices, achieving substantial model size
reduction while maintaining high accuracy [21]. Additionally,
approximate computing methods — primarily related to any-
time algorithms, which facilitate a trade-off between energy
consumption and accuracy [22] - provide greater flexibility.
By employing early or multi-exit algorithms and models [22]
[23], it becomes possible to trade the reduced accuracy for
an increase in data throughput, which can be acceptable
or even advantageous depending on a system’s operational
requirements [24].

II. RELATED WORKS

Several studies have developed deep neural network (DNN)
models with adaptations to enable execution in intermittent
environments. For instance, [22] introduces a multi-exit ar-
chitecture and leverages quantization and pruning among the
previously mentioned compression techniques. These rates
are optimized by a multi-agent reinforcement learning algo-
rithm, with rewards based on the average accuracy across all
exits given an available energy trace. An online algorithm
determines exit selection by assessing whether to proceed
with additional inference or to exit early, balancing energy
availability against the reduced accuracy resulting from not
executing the entire network. As each exit requires specific
training, the training process prioritizes the accuracy of the
most likely exits. Another work, ePerceptive [23], proposes

modifications to enhance the perceptive abilities of low-power
devices using DNNs. Its neural network architecture accom-
modates various input resolutions, recognizing that lower-
resolution data usually requires lower energy consumption.
Furthermore, similarly to the previous approach, multiple
exits enable the network to produce valid outputs even under
conditions of energy scarcity. Model compression techniques
like quantization and pruning have been effectively applied in
intermittent scenarios. Some studies [22] have combined these
techniques with architectural modifications, while others have
concentrated on optimizing pruning specifically for intermit-
tent environments [16].

III. FUTURE WORKS

Despite significant architectural modifications proposed and
executed in recent years, incorporating compression tech-
niques into model design and further adjustments are still
required for optimal execution. Multi- or early exiting, which
has already been implemented, is just one of the approximate
computing paradigm approaches that can be implemented for
machine learning models. Meanwhile, among model com-
pression techniques, the application of knowledge distillation
and tensor decomposition in an intermittent environment has
been lacking. Classically, quantization and pruning have been
more explored, though there has been an interest in intermit-
tent neural architecture search recently [20]. Moreover, most
works have restricted themselves to neural network models
and mostly convolutional [22], [23]. Support vector machines
have been adapted to implement an anytime algorithm ap-
proach [24], but other machine learning architectures have
been largely unexplored. Given the emerging nature of the
field, conducting a survey could provide valuable insights
into its current state and highlight potential areas for future
advancements.
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