
Scheduling with lightweight predictions in
power-constrained HPC platforms

Danilo Carastan-Santos∗, Georges Da Costa†, Igor Fontana de Nardin†, Millian Poquet†, Krzysztof Rzadca‡,
Patricia Stolf† and Denis Trystram∗

∗University Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG
Grenoble, France

Email: danilo.carastan-dos-santos@inria.fr, Denis.Trystram@univ-grenoble-alpes.fr
†University of Toulouse, IRIT, CNRS

Toulouse, France
Email: georges.da-costa@irit.fr, igor.fontana@irit.fr, millian.poquet@univ-tlse3.fr, patricia.stolf@irit.fr

‡University of Warsaw, Google
Warsaw, Poland

Email: krzadca@mimuw.edu.pl

Index Terms—Machine learning, HPC, Resource management,
Power capping, Simulation

I. INTRODUCTION

H IGH-Performance Computing (HPC) technology is be-
coming more accessible and less expensive to build,

which opens the door to new fields to capitalize on the
large computational capabilities afforded only by such large
systems. However, as opposed to the production cost, the
power consumption of HPC platforms only increases, reaching
levels [1] in the order of the power consumption of a small city.
Besides the carbon footprint issue [2] raised by this increase
in the power consumption, current climate events may heavily
strain the electricity grids [3] that power HPC platforms.
To avoid outages, it has become crucial for HPC platform
maintainers to deploy measures to ease the strain in the elec-
tricity grid, which is typically achieved by enforcing a power
capping over time in the platform. The platform’s resource
manager must therefore adapt to the available power during
this power constrained period. Only few works in the literature
have proposed a full framework, including a workload power
prediction method feeding energy data at the submission time
to a resource manager [4]. These few works often result in
complex and/or heavyweight optimization schemes.

In contrast with related works, the purpose of our work is
to propose methods that adapt to the available power and deal
with the power constraints as lightweight and simple as pos-
sible. We exploit power consumption data to develop models
to predict the power consumption of an HPC application in
advance. These models feed power consumption predictions
of arriving applications to a scheduler, and the scheduler uses
these predictions to comply with the power constraints while
keeping the supercomputer operational. Our contributions are:
(i) we predicted the job’s power consumption mean, max, and
standard deviation using a lightweight history-based predictor.
We show that the lightweight predictor is close to the Machine
Learning regressors; (ii) we compare different ways to verify

if a set of jobs is under power capping. They are Naive, Max,
Mean, and Gaussian; and (iii) we coupled the power prediction
and power verification in two scheduling algorithms: EASY
Backfilling [5] inspired and Greedy Knapsack. While EASY
Backfilling is a well-known scheduling algorithm, the Greedy
Knapsack improves the Quality of Service (QoS) and avoids
starvation. This abstract compiles a previous work [6] and an
article in the revision process for the IEEE Transactions on
Parallel and Distributed Systems journal [7].

II. METHODS

A. Power prediction

We propose two job power prediction methods. The first
method uses the power consumption of previous users jobs
(users job history). Therefore, for each job j of a given user
and a sliding window size s, we estimate some statistics P̂ •

j

of its power consumption by taking a weighted average of
historical power consumption over previous runs. The statistics
we estimate can be the mean (P̂ avg

j ), maximum (P̂max
j ), or

standard deviation (P̂ std
j ) of the job’s power consumption. The

general method to predict P̂ •

j is P̂ •

j =
∑

j′∈W θj′P
•

j′∑
j′∈W θj′

, where

W = {j′ | (rj − s) ≤ Cj′ ≤ rj}, θj′ =
(
1−

(
rj−Cj′

s

))α

,
rj is the release time of job j, Cj′ is the completion time
of a previously executed job j′ of same user who submitted
j, P •

j′ is the measured metric of power consumption of j′,
θj′ is aging adjustment for jobs, and α controls the way we
penalize older jobs (i.e., α = 1 is linear, α = 2 is superlinear,
and α = 0.5 is sublinear). The metric of power consumption
of a previous job P •

j′ can be known at the time we predict P̂j

since Cj′ ≤ rj .
The second method uses previous jobs power consumption

data and jobs metadata with Machine Learning (ML) regres-
sion methods. We use the jobs’ history to train a model at
week w that already passed, and use this model to perform
predictions of the power consumption of the jobs that will



arrive online at week w+1. At the end of week w+1 (i.e., at
timestamp t(w+1)) the training procedure repeats, generating
a new predictor f̂(j), which will be used for week w + 2. A
particular situation is for week w = 0, where there is no such
dataset to train a regression model. In this case we can use
f̂(j) = P̂ •

j from the first method.

B. Power verification

After predicting the power consumption, the scheduler must
verify if the power usage of a set of jobs J [t] would violate
the platform power cap P . We use the following methods
for verification: Naive uses the maximum reachable server’s
power consumption of a job. Mean uses the predicted mean
of each job. Therefore,

∑
i∈J [t] P̂i

avg
≤ P . Max uses the

predicted max of each job. Therefore,
∑

i∈J [t] P̂i
max

≤ P .
Gaussian uses a probabilistic model for jobs energy con-
sumption. This method tries to quantitatively formalize the
intuition that, when many jobs execute concurrently, it is
unlikely that all jobs simultaneously consume their peak power
usage. When testing if J [t] fits the power budget, we verify∑

i∈J [t](P̂i
avg

) + (σ ×
√∑

i∈J [t](P̂i
std

)2) ≤ P . σ controls
how certain we are that the power capping will not be violated
(e.g., σ = 1 has probability of 0.68 of not passing the power
capping, σ = 2 has probability of 0.95, and σ = 3 has 0.99).

C. Scheduling

Regarding the scheduling, we first implemented an EASY
Backfilling inspired algorithm. Usually, this algorithm only
verifies if there are enough resources (e.g., cores, servers,
memory, etc.). Besides this default verification, we included
the tests from Section II-B. We proposed two EASY algo-
rithms, sorting the waiting queue by FCFS (EASY FCFS) and
Smallest Area First (EASY SAF). The area is the number of
resources multiplied by the expected execution time. Then,
we modeled the problem as a 0/1 knapsack problem. This
optimization problem considers a knapsack with capacity Kc
and m items denoted by index j. Each item j has a profit vj
and a weight wej . It needs to determine the subset of items
that fits into the knapsack (

∑j=m−1
j=0 xj × wej ≤ Kc) and

that maximizes the total profit (maximize
∑j=m−1

j=0 xj × vj).
The classic formulation is to define a boolean xj that is set
to 1 if the item is selected and 0 if it is not [8]. In our
case, the items are the jobs in the queue. The capacity Kc
is the power capping and the weight wej is the predicted job
power consumption. We implemented two profits related to the
Quality of Service: waiting time (vj = waitj , where waitj
is the waiting time) and stretch (vj =

waitj+p̃j

p̃j
where p̃j is

the expected execution time). We solve this problem using a
greedy solution that takes the jobs in descending order of vj

wej
.

III. RESULTS

This work uses the trace collected from the Marconi100
supercomputer [9]. The experiments described in this article
have been made with open science and reproducibility con-
cerns in mind. Code, data and documentation to reproduce

our work is available on Zenodo [10]. Figure 1 compares all
predictors regarding the Mean Absolute Error of the mean
power consumption prediction. They have similar accuracy,
highlighting that our jobs’ history prediction method achieves
equivalent prediction performance to the more sophisticated
ML methods.

0 100 200 300
Mean Absolute Error (MAE)

History

LinearRegression

RandomForest

LinearSVR

SGDRegressor

Pr
ed

ict
io

n 
M

et
ho

d

Fig. 1. Mean Absolute Error of the mean power consumption prediction
methods for the jobs in the Marconi100 trace. Max and standard deviation
have similar results.

Figure 2 demonstrates the results of the different power
verifications and scheduling policies using the history based
predictor. First, Figure 2a compares the different power ver-
ifications for a power capping of 0.5 of the total platform
power and uses the same scheduling policy (EASY FCFS).
The best results are the values close to the power capping
but not surpassing it. Therefore, Gaussian 99 presents the best
approach, with the majority of the results closer but under the
power capping. Regarding Figures 2b and 2c, we compare
the same power verification (Gaussian 99) with different
scheduling algorithms. The results are compared to a baseline
algorithm (EASY FCFS without power capping). EASY SAF
has the best mean turnaround improvement (2b where the
higher is the better) but the worst max turnaround increase
(2c where the lower is the better). On the other hand, both
knapsack algorithms present a good trade-off between mean
and max turnaround.

0.1

0.2

0.3

0.4

0.5

na
ive m

ax

ga
us

sia
n_

99

ga
us

sia
n_

95

ga
us

sia
n_

68

m
ea

n

Job power estimator

M
ea

n 
pl

at
fo

rm
 p

ow
er

 c
on

su
m

pt
io

n

predicted

real

(a)

0e+00

5e+04

1e+05

Eas
y F

CFS

Eas
y S

AF

Kna
ps

ac
k W

ait
.

Kna
ps

ac
k S

tre
tch

Scheduler

M
ea

n 
tu

rn
ar

ou
nd

 im
pr

ov
. (

s)

(b)

−25000

0

25000

50000

Eas
y F

CFS

Eas
y S

AF

Kna
ps

ac
k W

ait
.

Kna
ps

ac
k S

tre
tch

Scheduler

M
ax

 tu
rn

ar
ou

nd
 in

cr
ea

se
 (

s)
(c)

Fig. 2. The results of different power verifications and scheduling policies.

IV. CONCLUSION

This article presents a simple and lightweight way to predict
and schedule jobs in an HPC platform under the power
capping. From this positive experience on EASY and knap-
sack, the next step is to investigate more complex scheduling
policies harnessing the new information from the predictors,
but also adding actual monitoring values to improve the quality
of its decision.



ACKNOWLEDGEMENTS

Experiments presented in this paper were carried out us-
ing the Grid’5000 testbed, supported by a scientific in-
terest group hosted by Inria and including CNRS, RE-
NATER and several Universities as well as other or-
ganizations (see https://www.grid5000.fr). This work was
supported by the research program on Edge Intelligence
of the Multi-disciplinary Institute on Artificial Intelligence
MIAI at Grenoble Alpes (ANR-19-P3IA-0003), ENERGU-
MEN (ANR-18-CE25-0008), the France 2030 NumPEx Exa-
SofT (ANR-22-EXNU-0003) and Cloud CareCloud (ANR-
23-PECL-0003) projects managed by the French National
Research Agency (ANR), REGALE (H2020-JTI-EuroHPC-
2019-1 agreement n. 956560), Polish National Science Center
grant Opus (UMO-2017/25/B/ST6/00116), and LIGHTAIDGE
(HORIZON-MSCA-2022-PF-01 agreement n. 101107953). A
CC-BY public copyright licence has been applied by the
authors to the present document and will be applied to all
subsequent versions up to the Author Accepted Manuscript
arising from this submission, in accordance with the grants’
open access conditions. We thank Salah Zrigui for starting
the study on the job energy profiles. We also thank Francesco
Antici for curating and sharing the Marconi100 dataset.

CONFLICTS OF INTEREST

Krzysztof Rzadca is also affiliated with Google.

REFERENCES

[1] “Frontier’s architecture,” https://www.olcf.ornl.gov/wp-content/uploads/
Frontier-Architecture-Overview Abraham.pdf, 2024, last access 18 Oc-
tober 2024.

[2] N. Bates, G. Ghatikar, G. Abdulla, G. A. Koenig, S. Bhalachandra,
M. Sheikhalishahi, T. Patki, B. Rountree, and S. Poole, “Electrical
grid and supercomputing centers: An investigative analysis of emerging
opportunities and challenges,” Informatik-Spektrum, vol. 38, no. 2, pp.
111–127, 2015.

[3] Wikipedia, “2021 Texas power crisis, Online; last access 29 november
2023,” https://en.wikipedia.org/wiki/2021 Texas power crisis, 2023.

[4] B. Kocot, P. Czarnul, and J. Proficz, “Energy-aware scheduling for high-
performance computing systems: A survey,” Energies, vol. 16, no. 2, p.
890, 2023.

[5] D. G. Feitelson and A. M. Weil, “Utilization and predictability in
scheduling the ibm sp2 with backfilling,” in Proceedings of the First
Merged International Parallel Processing Symposium and Symposium
on Parallel and Distributed Processing. IEEE, 1998, pp. 542–546.

[6] D. Carastan-Santos, G. Da Costa, M. Poquet, P. Stolf, and D. Trystram,
“Light-weight prediction for improving energy consumption in hpc plat-
forms,” in Euro-Par 2024: Parallel Processing, J. Carretero, S. Shende,
J. Garcia-Blas, I. Brandic, K. Olcoz, and M. Schreiber, Eds. Cham:
Springer Nature Switzerland, 2024, pp. 152–165.

[7] D. Carastan-Santos, G. da Costa, I. Fontana de Nardin, M. Poquet,
K. Rzadca, P. Stolf, and D. Trystram, “Scheduling with lightweight
predictions in power-constrained HPC platforms,” Oct. 2024, working
paper or preprint. [Online]. Available: https://hal.science/hal-04747713

[8] S. Martello and P. Toth, “Algorithms for knapsack problems,” North-
Holland Mathematics Studies, vol. 132, pp. 213–257, 1987.

[9] A. Borghesi, C. Di Santi, M. Molan, M. S. Ardebili, A. Mauri,
M. Guarrasi, D. Galetti, M. Cestari, F. Barchi, L. Benini et al., “M100
exadata: a data collection campaign on the cineca’s marconi100 tier-0
supercomputer,” Scientific Data, vol. 10, no. 1, p. 288, 2023.

[10] M. Poquet, D. Carastan-Santos, I. Fontana de Nardin, G. Da Costa,
K. Rzadca, P. Stolf, and D. Trystram, “Artifact data of article
”Scheduling with lightweight predictions in power-constrained HPC
platforms”, TPDS 2024,” 2024. [Online]. Available: https://doi.org/10.
5281/zenodo.13961003

https://www.grid5000.fr
https://www.olcf.ornl.gov/wp-content/uploads/Frontier-Architecture-Overview_Abraham.pdf
https://www.olcf.ornl.gov/wp-content/uploads/Frontier-Architecture-Overview_Abraham.pdf
https://en.wikipedia.org/wiki/2021_Texas_power_crisis
https://hal.science/hal-04747713
https://doi.org/10.5281/zenodo.13961003
https://doi.org/10.5281/zenodo.13961003

	Introduction
	Methods
	Power prediction
	Power verification
	Scheduling

	Results
	Conclusion
	References

