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INTRODUCTION

Microservices have emerged as a powerful architectural
style in Cloud computing, impacting the way applications are
developed, deployed, and managed. Unlike traditional mono-
lithic architectures, microservices break down applications into
smaller, independent components, each responsible for a spe-
cific function or task. This modular approach offers advantages
in terms of scalability, flexibility, and resilience [1]. As a con-
sequence, each microservice can be developed, tested, and in-
stantiated independently, allowing teams to work concurrently
and adopt diverse technologies and programming languages
tailored to the specific needs of each service. In addition,
the Cloud provides a suitable environment for microservice
architectures, offering elastic infrastructure, managed services,
and automation tools that facilitate the dynamic scaling and
orchestration of these components.

In this work, we explore the energy efficiency of
microservice-based software architectures in a Cloud com-
puting environment. The outlined techniques are preliminary
results of an ongoing Systematic Literature Review (SLR)
which is in the conducting phase. It started with 345 studies
for successive exclusions/selections and currently 66 studies
are being analyzed.

While many energy-efficient techniques may benefit to
various software architectures in the Cloud, certain techniques
are particularly well-suited or even unique to microservices.
The aim of this work is to identify promising software
approaches to be applied to microservice applications, some
typical Cloud technologies are also considered due to their
symbiosis with the application layer. We selected some state-
of-the-art techniques and present the main ideas relevant to
energy-efficient microservice applications.

I. APPLICATION ENERGY MONITORING

Monitoring is the underlying approach to measure system’s
properties through specialized tooling and to quantify them.
Thus, it is an essential part for the majority of energy-efficient
techniques. There are several methodologies to monitor the

energy consumption of resources in the Cloud [2]: external
devices called wattmeters or powermeters usually provisioned
in the wall socket of the equipment; intra-resource devices
placed inside server nodes between the power supply and the
motherboard; hardware sensors and software interfaces to re-
port the consumption of an equipment, supporting monitoring
tools via performance counters or vendor-specific APIs such
as the Intel Running Average Power Limit (RAPL) interface
or the NVIDIA Management Library (NVML) interface.

II. DEPENDENCY GRAPH APPLICATION MODELING

In the context of microservices and containerized Cloud data
centers, a dependency graph can model the interconnections
and dependencies between different services, containers, and
their resource requirements. This allows for a structured ap-
proach to understand, visualize, and optimize the deployment
and orchestration of these services. In general, this model at
run-time approach [3] aims to minimize operational expenses
in Cloud data centers by optimizing container allocation,
reducing communication workloads, and improving service
performance.

III. MICROSERVICES PLACEMENT IN KUBERNETES

Container orchestration is a process that automates the
deployment, management, scaling, and networking of contain-
ers across different environments. It effectively coordinates
microservices to ensure they work together harmoniously.
Kubernetes is the most popular container orchestration sys-
tem, developed by Google and now open source. It manages
communication, administration, and scheduling of containers
in distributed clusters, including in the cloud. To deploy a con-
tainer on a node, Kubernetes uses a scheduler that considers
several factors to determine where to place a pod, including the
availability of resources on the nodes, user-defined placement
constraints, and fault tolerance policies. This ensures that re-
sources are not overloaded and that applications run optimally.

IV. WORKLOAD PREDICTION AND MANAGEMENT

Workload prediction consists of analyzing current and his-
torical data to define a system profile on how the system
behaves in the present and forecast future demands for its



resources. Predicting workload attributes helps to identify pat-
terns and trends in resource usage, allowing system architects
and operators to optimize their resource allocation strategies,
ultimately reducing operational costs and energy [4].

V. SIMULATION AND EMULATION OF ENERGY
CONSUMPTION

Simulations in Cloud computing refer to the use of computa-
tional models to replicate the behavior of Cloud systems under
various conditions in a repeatable manner. These models can
mimic the performance, scalability, and energy consumption
of Cloud infrastructures, including server machines, networks,
and storage. Reduced versions of real-world scenarios help
researchers to predict how a Cloud system might behave
without the complex requirements of provisioning, compo-
sition, configuration, and deployment of production envi-
ronments [5]. However, simulators require assumptions and
abstractions that may not precisely reflect the complexity of
actual systems. To tackle this issue, emulation is employed
to create an accurate replica of a system’s hardware and
software environment. While emulation offers higher fidelity,
it is often more resource-intensive and less flexible compared
to simulations [6].

VI. CONFIGURATION OF SOFT RESOURCES

Unlike hardware resources (CPU, memory, network), soft
resources are system software components, such as threads or
connections, that are often neglected in resource allocation or
optimization techniques [7]. Mainly, soft resources are system
components that manage a server’s concurrency level and
enable the sharing of hardware resources.

VII. APPLICATION METADATA FOR ENERGY-AWARENESS

Inclusion of software metadata is the practice of comple-
menting the source code in order to provide additional infor-
mation about the code that is not part of the program itself. It
can be done in many forms, be it through annotations, config-
uration files, descriptors or expressions of a domain-specific
language. For instance, energy-aware application annotations
refer to metadata added to application components targeted
to provide information regarding their energy consumption
and efficiency characteristics. Also, in-code annotations that
embed application requirements or behavior patterns can be
useful for improving deployment strategies: e.g., by tagging
microservices with energy-related metadata, infrastructures
providers can gain insights into the energy usage patterns of
different application components. This kind of metadata typi-
cally include details about the energy consumption profiles,
energy-saving modes, mandatory and optional components,
and the environmental impact of running the microservices
under various conditions [8].

VIII. ENERGY CONSUMPTION ASSESSMENT AT TEST TIME

Software energy consumption can be estimated by Energy
Regression Testing (ERT) in Continuous Integration (CI)
pipelines. Such type of test focuses on energy consumption

of a program to ensure that code change do not degrade
energy consumption [9]. In practice, when a code change is
committed, a test from the CI pipeline would compare the
two versions of the software and decide if the newer one
would negatively impact the energy consumption. Particularly,
ERT can break if a non-functional concern as the energy
consumption is reported as increased or a target is reached,
according to the tests’ sensitivity configurations.

IX. DISTRIBUTED TRACING (DT) FOR
ENERGY-AWARENESS

DT is a traditional technique for improving the visibility
of requests into the operation of distributed systems. It is a
type of correlated logging that helps debugging in production,
investigating incidents, root cause analysis of failures, and
performance profiling of an application across process, com-
ponent, and machine boundaries [10]. There is a wide support
of frameworks and tooling for DT in helping operators trou-
bleshoot cross-component problems in deployed applications
with rich and detailed diagnostic information [11]. Energy
metrics, along with traditional system information (measure-
ments and information about execution paths and graphs) can
be included in the baggage context of the tracing [12].

CONCLUSION

Microservices enable to decouple applications into smaller,
more manageable components that can be developed, tested,
and deployed independently. This decoupling facilitates a low-
granularity control of different parts of an application, in which
development and operations can be optimized according to
the usage requirements of the system. In situations in which
energy efficiency is a priority, controlling a single or a small
number of microservices can impact the energy consumption
of the entire applications while balancing with performance
requirements. To that end, the techniques reported in this work
are promising tools to be leveraged towards reducing energy
consumption of microservice-based applications in the Cloud.
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