
Towards a self-adaptive architecture for
energy-efficient cloud applications

Henrique Medeiros∗, Sophie Chabridon∗, Denisse Muñante†
∗SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France

† ENSIIE & SAMOVAR, 91025 Évry, France
{henrique.de medeiros, sophie.chabridon}@telecom-sudparis.eu, denisse.munantearzapalo@ensiie.fr

Index Terms—energy efficiency, energy awareness, cloud com-
puting, self-adaptive systems, adaptation, microservices

Cloud applications have many benefits, such as high avail-
ability, low cost of maintenance, and elasticity [1], with the last
one focusing on scalability, cost efficiency, and time efficiency.
These characteristics, aligned with hardware provisioning,
allow to configure an application according the available
resources. These resources are allocated to answer different
goals of cloud applications. However, they are not directly
accessible to clients but managed through cloud providers in
Virtual Machines (VMs) [2].

Self-adaptive systems (SAS) are conceived as a way to
avoid and correct, under certain constraints, the degradation
of quality of service (QoS) of software during its execution,
which can be due to changes in environmental conditions.
SAS is used in the context of cloud-based applications to
allow their elasticity by applying various configurations, thus
avoiding the degradation of their QoS. Recent works mainly
focus on the analysis of the CPU usage and resource allocation
of cloud applications, neglecting the analysis of their impact
on energy consumption [3].

Energy-awareness and energy efficiency are two QoS in
our research. Energy efficiency means consuming less energy
to perform a given task, whilst energy-awareness refers to
the knowledge on the energy consumed when performing a
given task. Energy-awareness is expected to have an indirect
positive impact on energy efficiency itself [4]. Energy and
Power consumption are the metrics used for evaluating energy
efficiency and energy awareness of software.

The increase of energy consumption in cloud systems turns
light over the amount of hardware resources provisioned
in virtual machines [5]. Researchers are recently attracted
on comparing the energy consumed by cloud architectures,
for instance in [6] authors compared the impact of energy
consumption of six cloud patterns, to provide, at design-time,
guidelines of building more energy efficient cloud applica-
tions. However, in SAS context, energy efficiency and energy
awareness, as QoS criteria at run-time in cloud applications,
are still challenging because they require a deep analysis of
the resource requirements and the behavior of applications.

The energy consumption of applications is usually deter-
mined through resources analysis or using power meters, such
as CPU profiling, as pointed out by [7], the consumed power
by the CPU is related to CPU utilization and CPU frequency.

Or machine’s battery measurements, such as presented by [8]
to monitor the power consumption of serverless functions.
Serverless function presents the advantage that it is possible
to compute the amount of energy, once the function has a start
time and end time. But this analysis is made concerning the
entire VM. SAS usually uses these methodologies to trigger
some adaptations, such as in [9] applying at datacenters,
optimizing the maximization of the use of renewable energies.
In the literature, there is no work concerning the energy
consumption at the application level of cloud applications.

Adaptations concerning energy efficiency at cloud appli-
cations are more challenging, the analysis must be made at
run-time, without having to stop the application and consid-
ering the execution time of the application, and with energy
fluctuations, considering different events of the environment
over the application, e.g. different workloads and datacenter’s
temperature. We focus on addressing these challenges by pro-
viding a self-adaptive architecture to adapt cloud applications
for optimizing the energy consumption of the application. This
optimization must concern that the proposal must not have a
significant impact on the energy consumption of the cloud
application itself, when performing its adaptation.

Therefore, in order to address the previous challenges, in
this extended abstract we aim at answering the following
research questions:

• RQ1: Which are the requirements to enable energy
efficiency of cloud applications?

• RQ2: What analysis should be considered to reach
energy efficiency in a cloud environment?

To answer RQ1, we introduce a self-adaptive architecture to
enable energy efficiency of cloud applications (see Figure 1).
It extends the work of Weyns [10]. Weyns presents the ar-
chitecture of SASs into four components: i) Managed System,
which represents the application that should be adapted, ii)
Managing System, which is responsible to decide when and
how adapt the Managed System, iii) Adaptation Goals, which
define what is the adaptation aims, and iv) Environment, which
refers to the external world with which the SAS interacts. To
cope with environment’s changes, adaptations on the managed
system could be required.

The architecture of the managing system can be based on the
MAPE-K (Monitor, Analyse, Plan, Execute and Knowledge)
model [11]. Monitor gathers information from the managed
system and the environment context. Using monitored data,



Managing System

Plan adapt

effect

Managed System

sense

sense
input

Adaptation Goals

Remove
Adaptations

Decrease Energy
Consumption Cloud application

Datacenter1

DatacenterN

...
Container 1

CPU 1

Container 1

CPU 1
CPU N...

LEGEND:

Analyze

Execute

Monitor

Energy
Consumption

Monitor

CPU 1

CPU 2
Container N

CPU N

...

Knowledge
use

SAS Architecture
Component

MAPE-K Architecture
Component

Proposal component

Environment

Workload
User

Satisfaction

Bidirectional flowDirectional flowExtension Database

Fig. 1. Self-adaptive architecture for energy-efficient cloud applications

Analyze determines if an adaptation of the managed system
is needed or not. Plan decides what is the adaptation strategy
that will address the situation reported by the analysis. Finally,
Execute deploys the adaptation plan into the managed system.
Knowledge refers to all information needed for adapting the
managed system, e.g., model of system architecture, variants
of systems, etc.

Our contribution is represented by white boxes in Figure 1.
Energy Consumption Monitor extends the Monitor component,
it gathers the energy and power consumed by the managed
system, which in our research refers to cloud applications.
Cloud applications are represented by a set of datacenters
running different Docker1 containers. Each container receives
a quantity of available CPUs and this value can be modified
at run-time. Docker CPU configuration has default value as
”unlimited”, it means that we can use all available machine’s
CPU in the cloud provider environment. However, when an
adaptation is performed in the number of CPUs, Docker does
not allow to re-adapt to the ”unlimited” value, so it requires
always a value. We can adapt the number of CPUs considering
as maximum value the CPU limit that was established.

The power consumption of cloud applications is collected
using PowerAPI2 and Scaphandre3 tools. These tools monitor
instantaneous power consumption of cloud applications, using
the collected power consumption we are then able to infer the
energy consumed by cloud applications.

In our proposal, the power values are stored using a
database. PowerAPI stores the power consumption in a Mon-
goDB database. Scaphandre does not provide the same func-
tionality as PowerAPI, the values are stored in memory. Based
on the PowerAPI’s functionality, we collect the power using
Scaphandre and store them in a MongoDB database. To do
that, we collect the power using Prometheus Scaphandre’s
option. After collect the power consumption, using both tools,
a filtering process of the data is necessary to obtain the power
consumption of a specific application by using its process id.

For Analyze, the proposal uses a rule-base approach to
achieve the adaptation goals. One adaptation goal is Decrease

1https://www.docker.com/
2https://powerapi.org/
3https://github.com/hubblo-org/scaphandre

Energy Consumption that focuses on identifying an increase of
the energy consumed by the cloud application that is limited
by a threshold. It triggers adaptations in case this threshold
is violated. Moreover, once the analysis of the monitored
energy consumption is less than an established value, i.e.,
this value represents the lowest energy consumption for the
application that indicates a performing energy, the SAS adapts
to remove the previous adaptations achieving the goal Remove
Adaptations. It allows to avoid working on limits of the cloud
application.

Plan should analyze the variants of the cloud application
and their associated energy consumption to allows the decision
making of the adaptation. Execute should analyze the archi-
tecture and code of the cloud application to adapt it. To adapt
a cloud application, it should be able to receive adaptation
plans to be executed, it is made through actuators, e.g., using
an endpoint to be used by the Execute. As variants of the
cloud application, the literature provides a set of ideas, e.g.,
algorithms to make scheduling and processing of workloads
or host scaling [7], [12], vertically and horizontally [13]. First
experiments that we performed consider to modify the number
of configured CPUs of Docker container. Another experiments
that we executed consider to modify the applications them-self
that were running in Docker containers.

Environment presents the main attributes that are affected by
the cloud application, e.g., Workload and User Satisfaction.
The energy consumption can be related directly with the
workload, once that modifying the workload can impact in
the energy consumption. And the user satisfaction can be
impacted by the adaptations applied by the SAS.

To answer RQ2, one challenge that should be addressed
is to manage the fluctuations of energy consumption when
a software is monitored. These fluctuations do not allow
to use instantaneous values of energy consumption without
considering an error range. So, we plan to execute an empirical
study to evaluate the error range of energy consumption that
is collected through tools such as PowerAPI and Scaphandre.
Our purpose is to determine how much this error is and
how we can manage it. A second challenge is to decide
what is the optimal frequency of the analysis that will not
impact the energy consumption of our proposal. Finally, we



could consider other approaches to infer situations that need
adaptation using historical data.

We are working on applying the proposed architecture to
the TeaStore [14] benchmark microservice to validate our
approach, focusing on analyzing the energy consumption of
the application and of the adaptivity architecture. The bench-
mark is a basic web tea store, providing all the functionalities
of a store and it is already used in the academia, e.g.,
multi-objective of autoscale microservice [15] and monitoring
applications’ dependencies and metrics [16]. Our experimental
evaluation intends to compare the energy consumption of
a cloud application, with a varied workload, in scenarios
where we change the quantity of CPU available in a docker
environment and we make code changes in the application.
The expected results should help to understand how each
adaptation may affect the application and whether energy
consumption reduction is obtained with each one of them.

As a final goal, we expect to deliver a fully usable
self-adaptive architecture, helping developers deliver energy-
efficient applications without requiring adaptations in their
solutions.

ACKNOWLEDGMENTS

This research was produced within the framework of En-
ergy4Climate Interdisciplinary Center (E4C) of IP Paris and
Ecole des Ponts ParisTech. This research was supported by
3rd Programme d’Investissements d’Avenir [ANR-18-EUR-
0006-02]. This work received funding from the France 2030
program, managed by the French National Research Agency
under grant agreement No. ANR-23-PECL-0003.

REFERENCES

[1] P. Jamshidi, A. Ahmad, and C. Pahl, “Autonomic resource provisioning
for cloud-based software,” in Proceedings of the 9th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems, ser. SEAMS 2014. New York, NY, USA: Association
for Computing Machinery, 2014, p. 95–104. [Online]. Available:
https://doi.org/10.1145/2593929.2593940

[2] R. Moreno-Vozmediano, E. Huedo, R. S. Montero, and I. M. Llorente,
“Latency and resource consumption analysis for serverless edge analyt-
ics,” Journal of Cloud Computing, vol. 12, no. 1, p. 108, 2023.

[3] T. Chen, R. Bahsoon, and X. Yao, “A survey and taxonomy of self-aware
and self-adaptive cloud autoscaling systems,” ACM Computing Surveys
(CSUR), vol. 51, no. 3, pp. 1–40, 2018.

[4] M. G. Hassan, R. Hirst, C. Siemieniuch, and A. Zobaa, “The impact
of energy awareness on energy efficiency,” Int. Jrnl. of Sustainable
Engineering, vol. 2, no. 4, pp. 284–297, 2009.

[5] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consump-
tion modeling: A survey,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, pp. 732–794, 2016.

[6] F. Khomh and S. A. Abtahizadeh, “Understanding the impact
of cloud patterns on performance and energy consumption,” J.
Syst. Softw., vol. 141, pp. 151–170, 2018. [Online]. Available:
https://doi.org/10.1016/j.jss.2018.03.063

[7] M. Tsenos, A. Peri, and V. Kalogeraki, “Energy efficient scheduling
for serverless systems,” in 2023 IEEE International Conference on
Autonomic Computing and Self-Organizing Systems (ACSOS), 2023, pp.
27–36.

[8] A. Alhindi, K. Djemame, and F. B. Heravan, “On the power consumption
of serverless functions: An evaluation of openfaas,” in 2022 IEEE/ACM
15th International Conference on Utility and Cloud Computing (UCC),
2022, pp. 366–371.

[9] M. Xu, A. N. Toosi, and R. Buyya, “A self-adaptive approach for
managing applications and harnessing renewable energy for sustainable
cloud computing,” IEEE Transactions on Sustainable Computing, vol. 6,
no. 4, pp. 544–558, 2021.

[10] D. Weyns, “Software Engineering of Self-adaptive Systems,” Handbook
of Software Engineering, p. 399, 2019.

[11] IBM, “An architectural blueprint for autonomic computing,” IBM, Tech.
Rep., Jun. 2005.

[12] M. Xu, A. N. Toosi, and R. Buyya, “A self-adaptive approach
for managing applications and harnessing renewable energy for
sustainable cloud computing,” CoRR, vol. abs/2008.13312, 2020.
[Online]. Available: https://arxiv.org/abs/2008.13312

[13] T. Chen and R. Bahsoon, “Symbiotic and sensitivity-aware architecture
for globally-optimal benefit in self-adaptive cloud,” in Proceedings of
the 9th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, ser. SEAMS 2014. New York, NY,
USA: Association for Computing Machinery, 2014, p. 85–94. [Online].
Available: https://doi.org/10.1145/2593929.2593931

[14] J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer, J. Grohmann,
and S. Kounev, “TeaStore: A Micro-Service Reference Application for
Benchmarking, Modeling and Resource Management Research,” in 26th
IEEE Int. Symposium on the Modelling, Analysis, and Simulation of
Computer and Telecommunication Systems, ser. MASCOTS ’18, Sep.
2018.

[15] A. Horn, H. M. Fard, and F. Wolf, “Multi-objective hybrid autoscaling
of microservices in kubernetes clusters,” in Euro-Par 2022: Parallel
Processing, J. Cano and P. Trinder, Eds. Cham: Springer International
Publishing, 2022, pp. 233–250.

[16] M. Elsaadawy, A. Lohner, R. Wang, J. Wang, and B. Kemme,
“Dymond: dynamic application monitoring and service detection
framework,” in Proceedings of the 22nd International Middleware
Conference: Demos and Posters, ser. Middleware ’21. New York, NY,
USA: Association for Computing Machinery, 2021, p. 8–9. [Online].
Available: https://doi.org/10.1145/3491086.3492471


