
Exploiting Goal-oriented Requirements Models for
Increasing Energy Awareness: a Research Preview

Denisse Muñante∗, Anna Perini†, Angelo Susi†
∗ENSIIE & SAMOVAR, Évry, France

†Fondazione Bruno Kessler, Trento, Italy
denisse.munantearzapalo@ensiie.fr, {perini, susi}@fbk.eu,

Index Terms—Goal-oriented modelling, Energy awareness,
Energy efficiency, Goal-oriented testing

Optimising energy consumption of software systems has
became a primary goal. Increasing attention to building energy
efficient software systems is given by the software engineering
research communities, under specific umbrellas, for instance,
the GreenIT research community [1]. In Requirements Engi-
neering (RE), conceptual frameworks and guidelines have been
proposed to help increase stakeholders’ awareness about sus-
tainability requirements for software systems, including energy
efficiency requirements [2]–[4]. Goal-oriented (GO) modelling
for representing and analysing sustainability requirements (in-
cluding energy optimisation) has been proposed in several
work, as discussed for instance in [5]. Architectural patterns
and tactics have been proposed to guide software system ar-
chitects when evaluating possible alternative solutions [6], [7].
Techniques for measuring software energy consumption have
been made available as well [8], [9]. Up to our knowledge,
there is still limited availability of practical methods and tools
to be used since the earlier phases in software development.

In our research we aim at providing methods that can help
software developers and requirements engineers to increase
their awareness about energy consumption and the interplay
among different quality requirements.

Towards this objective we leverage on: (i) GO requirements
modelling and analysis, which has been largely exploited to
support the evaluation of alternative ways to achieve high level
goals, taking into account the impact in terms of positive and
negative contributions to quality goals [10], [11]; and (ii) the
potential of software testing (ST) in providing data useful
to assess, and eventually refactor, design- and requirements-
time artefacts, including requirements models. The resulting
method can be considered a REST method1, according to the
taxonomy proposed in [12].

The ultimate objective is to help increase requirements engi-
neers’ awareness about possible issues of energy consumption
in the modelled system, and support them in identifying parts
of requirements models that may need refactoring towards
improving energy efficiency of the system.

The proposed REST method includes a set of activities
that are performed iteratively by the software system devel-
opment team. They are depicted in Figure 1. Four roles are

1That is methods that connect RE and Software Testing (ST) [12].

involved with responsibility on specific activities, namely the
Requirements engineer, the Developer, the Test designer,
and the quality assurance team (QA team). The Require-
ments engineer analyses the collected domain knowledge
and builds a GO requirements model. S/he focuses on the
analysis of the stakeholders’ goals, including quality goals,
whose achievement may be delegated to system actors. On
the other side, the Developer builds the running software
application following design decisions that conforms to the
previous goal model. Traceability among the different artefacts
in the development process, from requirements GO models
to code is assumed to be established and maintained. Fol-
lowing the GOST methodology and focusing on acceptance
and integration test cases derivations, scenarios from GO
models are derived in a systematic way. Thus, a scenario
represents the alternative path, composed of sub-goals and
sub-tasks, that achieve the satisfaction of stakeholders’ goals.
Preconditions and post-conditions complete the definition of
scenarios. The Test designer is then responsible to validate
scenarios derivations and to select criteria to setup test cases
that are inferred from scenarios. We focus on acceptance
test cases, which provide a mechanism to define and assess
system’s external qualities, and integration test cases, which
assess system’s actors dependencies. The quality assurance
team, QA team executes the test cases on the running system,
which is instrumented with energy consumption metering
system, as for example JoularJX [13], which is a Java-based
software energy monitoring tool. Then, energy consumption
data are analysed. In particular, they are used to assess energy

GO req.
model

Derivation of 
alternative 
scenarios

Definition of 
test cases

Running software
application

conforms to 

Collection of energy 
consumption (EC)

from test cases execution

input

input

Analysis and 
evaluation of req.

Association of energy
metrics to models

requirements time
runtime

GO model 
+ EC

output

Req.
engineer

Test
designer

QA
team

Developer

Fig. 1. Process of the proposed REST method



consumption related to alternative requirements modelled in
OR refinements. The collected data is then aggregated and
associated back to requirements GO models.

In order to evaluate the feasibility of our proposal, we use
the Tele Assistance Service (TAS) system [14].
Design time: Figure 2 depicts an excerpt of the iStar2.0
early requirement model of the TAS system. The patient (PDC
actor) has the primary goal Therapy continuously
adapted, that requires the exchange of information (the
resources Vital Parameters and Updated therapy)
with the TAS actor, i.e., the Tele Assistance Service, which
is the main system actor. Among the relevant patient’s quality
goals, we distinguish having prompt advice and easy access,
as well as having an energy efficient system. The impact of
the main (functional) goals to such quality goals are modelled
via contribution relationships using qualitative labels (e.g.,
hurt, make). A deeper assessment, such as what are the
relative weights among such contribution relationships should
be further analysed. The proposed REST method will help in
regards to the contributions to the energy efficiency quality.

Pursuing the analysis of the TAS actor, alternative solutions
for goal achievement are explored via goal refinements, which
explicit sub-goals, tasks and their utilisation of resources (not
shown in Figure 2 for space reasons), and provide rationale
for dependencies with external actors. For example, the TAS
actor interacts with a medical assistance actor, MAS, to analyse
the vital parameters from the patient and with an alarm system,
AS, that mange the alarms from the patient. The analysis of
these dependencies helps assess how collaborative goals/tasks
influence the total energy consumed by multi-actor systems.
Indeed, as argued in [16], besides computing resources such
as memory, CPU, files, networks, etc. also interactions of
IoT entities are important elements to be analysed at require-
ments time with regard to energy consumption. We derive
scenarios and associate test cases for GO model elements
that are involved in contribution relationships to the Energy
efficiency quality goal. We can consider for instance the
goals therapy continuously adapted and direct
help request managed. Notice that the latter is refined
in two alternative tasks that may have minor positive impact
(help? contribution) or major negative impact (hurt? con-
tribution) to energy efficiency.
Run time: Running energy metering technique while ex-
ecuting the derived test cases provides data on energy
consumption of code corresponding to alternative paths in
the requirements GO model. In a first experiment, we fo-
cused on two testing scenarios corresponding to the task
pressing panic button and the resource dependency
vital parameters, for which we executed and tested the
TAS system, using JoularJX to measure energy consumption.
This experiment was conducted on an HP ProBook laptop
(Intel Core i7-1165G7) running Ubuntu 20.04.6 LTS, Java
11, and JoularJX 2.0. To manage fluctuations of the gathered
energy consumption measurements, we run each scenario 120
times. An excerpt of the collected data are given in Table I.
Back to design time: Their analysis allowed to identify

which requirements alternative corresponds to the most en-
ergy consuming implemented solution. We identify that the
code associated to the vital parameters dependency
consumes approximately 3.25% more energy than that mapped
to the task pressing panic button (this difference was
determined as significant after running the wilcoxon test), thus
raising attention to the refinement of this latter GO element.

TABLE I
THE DISTRIBUTION OF THE ENERGY CONSUMED (EC) BY THE TAS
SYSTEM’S SCENARIOS, COMPUTED ON 120 EXECUTIONS. WHERE:

RSDEC = RELATIVE STANDARD DEVIATION OF EC

Scenarios EC Average EC Median RSDEC
Pressing button Message 18.44 18.03 11.62

Vital parameters Message 19.06 18.61 11.88

Discussion and next steps: This first experiment served to
assess the feasibility of the method and helped point out
issues to be addressed for consolidating it. They include the
automation of the test cases derivation procedure, and the
definition of guidelines for performing the method’s activities,
as depicted Figure 1, in a systematic way.

The application of the method to other benchmark case stud-
ies will help collect further evidence about the appropriateness
of the method. This latter research will contribute to assess
the usefulness of the identified model indicators of energy
consumption, (e.g. number of actor’s inter-dependencies), as
well as to identify other possible model indicators.

Concerning our longer term research, Figure 3 depicts an
overview of our envisioned approach to increase energy aware-
ness at requirements time, and shows that the proposed REST
method corresponds to a first key step in the whole process.
The following step in Figure 3 corresponds to the definition
of an energy model predictor based on the identified model
indicators of energy consumption. As mentioned, so far we
focused on two model indicators in GO models that can lead to
greater energy consumption in the associated code, namely the
number of means-end relationships modelling the utilisation of
resources and the number of dependencies between system’s
actors. The exploration for other model indicators will be
pursued together with the applicability of concepts of bad
smells in models. Finally, the Step 3 in Figure 3, corresponds
to the exploitation of the energy model predictor in a new
project by approximately deducing energy consumption from
the analysis of the corresponding GO models.

ACKNOWLEDGMENTS

This work was partially supported by the ”GreenSE4IoT:
Towards Energy-efficient Software for Distributed Systems”
project whose code is STIC-AMSUD 22-STIC-04, and was
partially carried out at the Energy4Climate Interdisciplinary
Center (E4C) of IP Paris and École des Ponts ParisTech, which
is in part supported by 3rd Programme d’Investissements
d’Avenir [ANR-18-EUR-0006-02].

REFERENCES

[1] R. Verdecchia, P. Lago, C. Ebert, and C. de Vries, “Green it and green
software,” IEEE Software, vol. 38, no. 6, pp. 7–15, 2021.



Fig. 2. Early requirements GO model of the Tele Assistance Service. iStar 2.0. notation [15].

1) REST method: collecting 
EC estimates

of model indicators

2) Definition of
an energy model 

predictor

3) Estimation of EC
at requirements 

level

GO models Running
Software GO models

+ energy consumption

Energy model
predictor

GO model
for new case

GO model
+ energy 

consumption 
estimates

Fig. 3. Overview of the envisioned approach for energy awareness at
requirements model time

[2] B. Penzenstadler and H. Femmer, “A generic model for sustainability
with process- and product-specific instances,” in Workshop on Green
in/by Software Engineering, ser. GIBSE ’13. New York, USA:
Association for Computing Machinery, 2013, p. 3–8.

[3] C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook, M. Mahaux,
B. Penzenstadler, G. Rodrı́guez-Navas, C. Salinesi, N. Seyff, C. C.
Venters, C. Calero, S. A. Koçak, and S. Betz, “The karlskrona manifesto
for sustainability design,” 2014.

[4] L. Duboc, B. Penzenstadler, J. Porras, S. A. Koçak, S. Betz,
R. Chitchyan, O. Leifler, N. Seyff, and C. C. Venters, “Requirements
engineering for sustainability: an awareness framework for designing
software systems for a better tomorrow,” Requir. Eng., vol. 25, no. 4,
pp. 469–492, 2020.

[5] J. Cabot, S. Easterbrook, J. Horkoff, L. Lessard, S. Liaskos, and J.-
N. Mazon, “Integrating sustainability in decision-making processes: A
modelling strategy,” in 2009 31st International Conference on Software
Engineering - Companion Volume, 2009, pp. 207–210.

[6] S. Gupta, P. Lago, and R. Donker, “A framework of software architecture
principles for sustainability-driven design and measurement,” in 2021
IEEE 18th International Conference on Software Architecture Compan-
ion (ICSA-C), 2021, pp. 31–37.

[7] C. V. Paradis, R. Kazman, and D. A. Tamburri, “Architectural tactics
for energy efficiency: Review of the literature and research roadmap,”
in 54th Hawaii International Conference on System Sciences, HICSS.
ScholarSpace, 2021, pp. 1–10.

[8] B. Dornauer and M. Felderer, “Energy-saving strategies for mobile
web apps and their measurement: Results from a decade of research

(preprint),” preprint arXiv:2304.01646, 2023.
[9] S. Chowdhury, S. Borle, S. Romansky, and A. Hindle, “Greenscaler:

training software energy models with automatic test generation,” Em-
pirical Software Engineering, vol. 24, no. 4, pp. 1649–1692, 2019.

[10] J. Mylopoulos, L. Chung, S. S. Liao, H. Wang, and E. S. K. Yu,
“Exploring alternatives during requirements analysis,” IEEE Softw.,
vol. 18, no. 1, pp. 92–96, 2001.

[11] J. Horkoff, T. Li, F. Li, M. Salnitri, E. Cardoso, P. Giorgini, and
J. Mylopoulos, “Using goal models downstream: A systematic roadmap
and literature review,” Int. J. Inf. Syst. Model. Des., vol. 6, no. 2, pp.
1–42, 2015.

[12] M. Unterkalmsteiner, R. Feldt, and T. Gorschek, “A taxonomy for re-
quirements engineering and software test alignment,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 23, no. 2, pp.
1–38, 2014.

[13] A. Noureddine, “Powerjoular and joularjx: Multi-platform software
power monitoring tools,” in 18th Intl. Conf. on Intelligent Environments,
IE 2022, Biarritz, France, June 20-23, 2022. IEEE, 2022, pp. 1–4.

[14] D. Weyns and R. Calinescu, “Tele assistance: A self-adaptive service-
based system exemplar,” in 10th IEEE/ACM International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS
2015, Florence, Italy, May 18-19, 2015, P. Inverardi and B. R. Schmerl,
Eds. IEEE Computer Society, 2015, pp. 88–92.

[15] F. Dalpiaz, X. Franch, and J. Horkoff, “istar 2.0 language
guide,” CoRR, vol. abs/1605.07767, 2016. [Online]. Available:
http://arxiv.org/abs/1605.07767

[16] S. A. Chowdhury and A. Hindle, “Greenoracle: estimating software
energy consumption with energy measurement corpora,” in Proceedings
of the 13th International Conference on Mining Software Repositories,
MSR 2016, Austin, TX, USA, May 14-22, 2016, M. Kim, R. Robbes,
and C. Bird, Eds. ACM, 2016, pp. 49–60.


